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The strong coupling expansion for anharmonic oscillators
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46100-Burjassot (Valencia), Spain
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Abstract. We accurately calculate the strong coupling expansion for anharmonic oscillators
by means of a robust and stable numerical algorithm. The method applies to any state and to
any anharmonicity degree. By means of the perturbation coefficients, we estimate the location
of the branch points that determine the convergence radius of the strong coupling expansion.

Anharmonic oscillators with Hamiltonian operators

H = p2+ x2+ λxK K = 4, 6, . . . (1)

are among the most widely studied models in quantum mechanics. Bender and Wu [1] and
Simon [2] proved that the perturbation series in powers ofλ for the eigenvaluesE(λ) (i.e.
the so-called weak coupling expansion) is divergent for all values ofλ. The calculation
of the coefficients of the weak coupling expansion is relatively simple and can be carried
out analytically to large perturbation orders. This series gives reasonable results just for
sufficiently small values ofλ, and even then, only after appropriate truncation. For moderate
and large values of the perturbation parameter one has to resort to summation methods, such
as, for example, Padé and Borel–Pad́e approximants, and renormalization [3].

On the other hand, the strong coupling expansion ofE(g) = E(λ)/λ2/(K+2) in powers
of g = (1/λ)4/(K+2) has a finite radius of convergence determined by a pair of branch points
at which two eigenvalues coalesce [1, 2, 4]. Formally, one obtains this series by application
of perturbation theory withH0 = p2 + xK as the unperturbed Hamiltonian operator and
H1 = x2 as the perturbation. Clearly, one cannot obtain this expansion exactly because the
eigenvalue equation forH0 is not exactly solvable.

As far as we know, the first attempt to obtain the strong coupling expansion was due
to Turbiner and Ushverizde [5], if one does not take into account earlier numerical fits
[6, 7]. Later, Guardiolaet al [8] obtained an accurate strong coupling expansion from
a renormalized weak coupling series. Further developments are due to Fernández and
Guardiola [9], Janke and Kleinert [10] and Weniger [11]. The last two papers exhibit the
most accurate determination of the strong coupling expansion for the quartic anharmonic
oscillator (K = 4), but the accuracy of their methods deteriorates considerably for the sextic
(K = 6) and octic (K = 8) anharmonic oscillators. The accuracy decreases still further
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for greater values ofK because the renormalization procedure is unable to overcome the
increasingly stronger divergence of the weak coupling series. For this reason no accurate
strong coupling expansion for large values of the anharmonicity degreeK have been yet
reported, in spite of the renewed interest in the subject. None of the approaches used to
obtain the strong coupling series is wholly algebraic and they may therefore be termed
seminumericalemphasizing the fact that they resort to numerical calculations in some way
or another.

It is our purpose to show that a straightforward numerical integration of the equations
of Rayleigh–Schr̈odinger perturbation theory is a remarkably simple and accurate method
for the calculation of the strong coupling coefficients of sufficiently large order, even for
anharmonicity degrees as large asK = 1000. Additionally, we also consider the limit
K →∞.

A numerical calculation of the strong coupling expansion was recently described by
Skála andČı́žek [12]. Although the mathematical foundation of their novel application of
the Rayleigh–Schrödinger perturbation theory was criticized [13, 14] and later reformulated
in a more rigorous way [15], the original idea of using a numerical approach appears to be
sound [12]. The algorithm presented here is based on the standard Rayleigh–Schrödinger
perturbation theory, and differs from the one proposed in [12, 15].

Assuming that the eigenfunctionsψ and eigenvaluesE of a Hamiltonian operator of the
form H = H0 + gH1 can be formally expanded in theg-power series,ψ = ∑n g

nψnand
E =∑n g

nEn, respectively, one obtains the corresponding coefficientsψn andEn from the
hierarchical equations

H0ψn +H1ψn−1 =
n∑

p=0

Epψn−p. (2)

The solution of this set of equations is facilitated by the arbitrary choice of the
normalization 〈ψ0|ψ〉 = 1, which leads to theintermediate orthogonality condition
〈ψ0|ψn〉 = δn0. As a result, the correction of ordern to the energy is given by the projection
of equation (2) on〈ψ0|:

En = 〈ψ0|H1|ψn−1〉 (3)

and the corresponding correction to the eigenfunction follows from the linear inhomogeneous
equation

(H0− E0)ψn = −H1ψn−1+
n∑

p=1

Epψn−p. (4)

Only the first step (n = 0) requires the solution of an eigenvalue equation:(H0−E0)ψ0 = 0.
In our specific problem the unperturbed Hamiltonian operator and the perturbation are

respectivelyH0 = −D2+ xK andH1 = x2, whereD is the derivative operator. Equations
(3) and (4) become

En =
∫ ∞
−∞

ψ0(x)x
2ψn−1(x)dx (5)

and

(−D2+ x2N − E0)ψn(x) = −x2ψn−1(x)+
n∑

p=1

Epψn−p(x) (6)

respectively, with the boundary conditions

lim
x→±∞ψn(x) = 0. (7)
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A straightforward numerical calculation of the perturbation coefficientsEn and ψn
rests upon the substitution of the approximate boundary conditionsψn(±X) = 0, with
a sufficiently large value ofX, for the exact ones equation (7). In addition, the second
derivative operatorD2 is approximated by the centred second difference operatorδ2/h2,
whereh is the constant integration step of a uniform mesh in [−X,X]. The differential
equation is thus converted into a three-point recurrence relation, equivalent to a tridiagonal
linear system of equations. The special casen = 0 reduces to the determination of the chosen
eigenvalue and corresponding eigenvector of a tridiagonal symmetric matrix. Finally, we
calculate the integral in equation (5) by means of the repeated trapezoidal rule. All these
tasks are commonly described in detail in any textbook of numerical analysis†.

It should be mentioned that there are alternate numerical methods to determine the
perturbation expansion. However, one should have in mind that three procedures are
required: one to solve the eigenvalue equation forφ0, another to compute thenth-order
perturbative energy, equation (5) and finally another to integrate the chain of inhomogeneous
differential equations (6) for a two-point boundary value problem. To be efficient and
consistent one should use algorithms of the same quality, i.e. with equivalent leading-error
terms. Moreover, since a givennth-order requires the use of the previous 0, 1,. . . n − 1
functions, all of them should be determined in the same mesh. Our choice has been to
use the simpler O(h2) algorithm for all the three tasks, and afterwards to improve the
quality of the results by a deferred limit to null step. Alternatively, one could have used
high-order single-step integration methods both for the eigenvalue equation (Numerov and
extended Numerov methods [16–18], exponential fitted methods [19, 20], etc) and for the
inhomogeneous equation (mid-point and Runge–Kutta methods [21, 22]), as well as high-
order quadrature rules, like the familiar Simpsom, Simpsom-3/8, Bode etc rules.

In what follows we enumerate some advantages of our apparently naive scheme.
• The tridiagonal matrix to be diagonalized gives rise to a Sturm sequence, so that

one selects a specific unperturbed level by just counting the number of sign changes in the
Sturm sequence.
• The contributions to the error in the approximate perturbation corrections to the energy

and eigenfunction are proportional toevenpowers of the mesh sizeh.
• It is possible to carry out adeferred limit to h = 0, called alsoRichardson

extrapolation, by appropriate combination of the results of calculations with different values
of h.
• One mayestimatethe error of the results by comparing the last two extrapolations.
In the case of the anharmonic oscillators, the algorithm has proved to be economical and

robust, applying successfully to anharmonicities as strong asx1000 without special care. The
error in the perturbation corrections to the energy through order 80 is uniformly estimated
to be less than one part in 108 at worst. Quite tractable integration grids with 500–8000
points were enough for such an accuracy.

The method satisfactorily passed two tests, one at each end of the anharmonicity interval
2 6 K < ∞, within machine precision. ForK = 2 one obtains the exact perturbation
corrections to the ground-state energy from the Taylor expansion of

√
1+ g. On the other

hand, whenK →∞ the model becomes a harmonic oscillator in a box with impenetrable
walls atx = ±1. In the latter case we obtained the perturbation corrections to the energy
analytically by means of the hypervirial perturbative method [24].

Just to give a flavour of the values of the perturbation corrections to the energyEn we

† The actual FORTRAN code was based in a custom library, from [23]. The authors will supply a copy of the
full FORTRAN code upon e-mail request.
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Table 1. Selected coefficients of the strong coupling expansion for small values ofK. The
quantities within brackets denote powers of 10. The last digit of each entry is uncertain.

En K = 4 K = 6 K = 8

E0 1.060 362 09046 1.144 802 45383 1.225 820 1136
E8 −1.887 720 1490 [−7] 6.322 514 3404 [−9] 7.529 426 3506 [−10]
E16 −1.522 121 7804 [−13] −4.503 200 921 [−18] 1.066 954 515 [−18]
E24 1.041 782 2073 [−18] −2.915 646 411 [−24] 2.248 546 450 [−27]
E32 −3.404 029 0538 [−24] −9.923 668 018 [−32] 5.124 372 181 [−36]
E40 7.539 834 269 [−30] −4.594 454 27 [−40] 1.082 376 476 [−44]

Table 2. Selected coefficients of the strong coupling expansion for large values ofK. The
quantities within brackets denote powers of 10. The last digit of each entry is uncertain.

En K = 500 K = 1000 K = ∞
E0 2.400 235 383 2.433 556 881 2.467 401 100 26
E8 1.847 326 44 [−15] 1.502 201 54 [−15] 1.221 108 985 [−15]
E16 −1.196 070 51 [−29] −7.800 800 35 [−30] −5.083 858 08 [−30]
E24 −1.795 339 84 [−43] −9.391 303 57 [−44] −4.906 910 136 [−44]
E32 −1.212 733 58 [−57] −5.087 932 24 [−58] −2.131 333 963 [−58]
E40 1.280 738 7 [−72] 4.309 642 [−73] 1.447 370 88 [−73]

show some of them for the ground state of anharmonic oscillators with small values ofK

in table 1 and for large values ofK in table 2. The last column of table 2 corresponds to
the harmonic oscillator in a box described above.

The algorithm applies also to excited states. However, the accuracy of the perturbation
corrections to the energy decreases with the quantum number, exactly in the same way as
in the numerical calculation of energy eigenvalues.

There are many reasons for the recent interest in the strong coupling expansion for
anharmonic oscillators [10, 11]. However, it appears that the fact that one can obtain the
radius of convergence of the series from accurate enough coefficients of sufficiently large
order has been overlooked. In fact, pairs of eigenvalues of the anharmonic oscillators cross
at branch points in the complexg plane [1, 2], and the branch point closest to the origin
determines the asymptotic behaviour of the perturbation coefficients with the perturbation
order. It is therefore possible to estimate the location of the branch point closest to the
origin by means of the perturbation corrections calculated in the way described above.

Shanley has given a detailed map with the branch points for the quartic anharmonic
oscillator [4]. The same kind of calculation for the anharmonic oscillators with increasing
values ofK must be a formidable numerical task. However, if one is interested only in
the branch-point closest to the origin, then the generating function method is a thoroughly
practical approach [25].

The branch points appear in complex conjugate pairs becauseE∗(g) = E(g∗). It is
possible to estimate the location of the branch point closest to the origin by means of a
generating function with the appropriate branch-point structure. For the present purposes it
is enough to consider the simple ansatz

W(g) = C
√
(g − gR)2+ g2

I . (8)

The coefficients of the Taylor expansion of this function aroundg = 0 satisfy the recurrence
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relation

(n− 1)Wn−1+ (1− 2n)gRWn + (g2
R + g2

I )(n+ 1)Wn+1 = Wn−1. (9)

We derive a second independent equation by simply substitutingn+1 for n in equation (9). A
system of two equations with two unknowns,gR andg2

R+g2
I , results from later substitution of

the actual coefficientsEn for Wn in the equations thus generated. Solving for the unknowns
we obtain corresponding sequences that converge towards the real part and modulus of the
pair of branch points closest to the origin.

We have tested the generating function method by means of independent results for three
cases. ForK = 2 we know thatgR = −1 andgI = 0 exactly. ForK = 4 we compared our
results with those obtained by Shanley [4]. ForK = ∞ we derived the secular equation for
the anharmonic oscillator in the basis set of eigenfunctions of the particle in the box which
implicitly determines eitherE(g) or g(E). The condition∂g/∂E = 0 yields the location
of the branch points with increasing accuracy for increasing values of the dimension of the
secular determinant. In all three cases the agreement was satisfactory.

The position of the pair of branch points closest to the origin as a function ofK is
shown in figure 1 for the ground state. The branch points move left in the complexg plane
asK increases. Some selected values ofK are indicated in the figure for clarity. The
left-most point corresponds toK = ∞ and the right-most point (exactly on the real axis) to
K = 2. The figure also includesnon-integeranharmonicities, corresponding to terms|x|ν
in the unperturbed Hamiltonian, withν = 2.5, 3 and 3.5.

In conclusion, a straightforward numerical treatment proves to be suitable for the study
of the strong coupling regime of anharmonic oscillators.

Figure 1. Position of the pair of branch points closest to the origin as a function of the oscillator
anharmonicityK. Selected values ofK are indicated above the corresponding points. The left-
most point corresponds toK = ∞.
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